
MaPLE: A MapReduce Pipeline for Lattice-based
Evaluation and Its Application to SNOMED CT

Guo-Qiang Zhang∗, Wei Zhu∗, Mengmeng Sun∗, Shiqiang Tao∗, Olivier Bodenreider†, Licong Cui∗
∗Department of Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, OH 44106

†National Library of Medicine, Bethesda, MD 20892, USA

Abstract—Non-lattice fragments are often indicative of struc-
tural anomalies in ontological systems and, as such, represent
possible areas of focus for subsequent quality assurance work.
However, extracting the non-lattice fragments in large ontological
systems is computationally expensive if not prohibitive, using
a traditional sequential approach. In this paper we present
a general MapReduce pipeline, called MaPLE (MapReduce
Pipeline for Lattice-based Evaluation), for extracting non-lattice
fragments in large partially ordered sets and demonstrate its
applicability in ontology quality assurance. Using MaPLE in a 30-
node Hadoop local cloud, we systematically extracted non-lattice
fragments in 8 SNOMED CT versions from 2009 to 2014 (each
containing over 300k concepts), with an average total computing
time of less than 3 hours per version. With dramatically reduced
time, MaPLE makes it feasible not only to perform exhaustive
structural analysis of large ontological hierarchies, but also to
systematically track structural changes between versions. Our
change analysis showed that the average change rates on the non-
lattice pairs are up to 38.6 times higher than the change rates of
the background structure (concept nodes). This demonstrates that
fragments around non-lattice pairs exhibit significantly higher
rates of change in the process of ontological evolution.

I. Introduction

Ontologies represent not only the concepts, but just as
importantly, the relationships between the concepts. Ontologies
have become a critical component in informatics and data
intensive applications. They are used, for example, to handle
terminological heterogeneity, facilitate system interoperability
and integration, enable knowledge discovery [1], [2], [3], [4],
and manage biomedical big data [5], [6].

However, ontological systems are often incomplete, under-
specified, and non-static. New applications call for new on-
tologies or expansion and enhancement of existing ones.
Many additional factors, such as merging or reusing existing
ontologies and porting to a common representation framework,
may introduce inconsistencies and unintended artifacts. Thus
Ontology Quality Assurance (OQA) is an indispensable part
of the ontological engineering lifecycle [7].

Due to the increasingly large size and structural complexity
of modern ontologies, particularly those from biomedicine,
OQA has been hampered by the lack of systematic and
scalable methods necessary to keep pace with the evolution
and emergence of ontological systems. The state of affairs
is that [8]: “given modern tooling and computer power, the
barriers for quality assurance can now be overcome, although
no well-integrated toolset is yet available.”

One of the generally applicable ontology design principle
or pattern is that the subsumption relationship (IS-A hierarchy)

should form a lattice [9]. However, extracting non-lattice
fragments in large ontological systems is computationally
expensive if not prohibitive, using a traditional sequential ap-
proach. In previous work [9], we analyzed 34 million pairs of
SNOMED CT concepts and identified over 518,000 non-lattice
pairs using SPARQL queries over an RDF representation of the
ontology. However, the time needed for such an exhaustive
analysis – 3 months using standard desktop machines – is
incompatible with use in real quality assurance applications.

In this paper we present a general MapReduce pipeline,
called MaPLE (MapReduce Pipeline for Lattice-based Eval-
uation), for extracting non-lattice fragments in large partially
ordered sets and demonstrate its applicability in ontology qual-
ity assurance. MaPLE consists of a sequence of simple order-
theoretic and set-theoretic operations designed for mappers
and reducers that collectively capture the non-trivial lattice-
theoretic property. We show that the lattice-based analysis
of hierarchical relations in SNOMED CT, while quadratic
in computational complexity, is tractable using MaPLE with
Hadoop. After implementing MaPLE in Cloudera Hadoop 4.3
on a 30-node cluster, we systematically extracted non-lattice
fragments in 8 SNOMED CT versions from 2009 to 2014, with
an average total compute time of less than 3 hours per version.
With dramatically improved turn-around time for analysis, 3
hours instead of 3 months, MaPLE makes it feasible not only
to perform exhaustive structural analysis of large ontological
hierarchies, but also to systematically track structural changes
between versions.

The rest of the paper is organized as follows. In Section II
we recall background information on related topics. In Sec-
tion III we describe our MapReduce algorithm MaPLE for
extracting non-lattice fragments in a partially ordered set. In
Section IV we describe the implementation of MaPLE in a
Hadoop local cloud, and an application for extracting all non-
lattice fragments in SNOMED CT. In Section V we present
the main statistics and results about non-lattice fragments
in SNOMED CT versions and a performance evaluation of
MaPLE. The last section contains conclusive remarks.

II. Background

A. SNOMED CT

Developed by the International Health Terminology Stan-
dard Development Organization (IHTSDO), SNOMED CT is
the world’s largest clinical terminology and provides broad
coverage of clinical medicine, including findings, diseases,
and procedures for use in electronic medical records. The
international release of SNOMED CT is produced twice a
year, in January and in July, reflecting both changes to medical

Proceedings of the IEEE International Conference on Big Data 2014 (IEEE BigData 2014) 2014:754-759.

knowledge (e.g., new drugs) and changes to the editorial pro-
cess (e.g., changes to the representation of anatomical entities).
In addition, the member countries of the IHTSDO also create
extensions of SNOMED CT, with additional concepts specific
to the needs of a particular country. For example, the U.S.
extension of SNOMED CT is now packaged together with the
international release and released in March and September.

From a structural perspective, SNOMED CT can be seen
as a series of large directed acyclic graphs, one for each of its
19 “sub-hierarchies:” Procedure, Physical force, Event, Staging
and scales, Substance, Environment or geographical location,
Situation with explicit context, Body structure, Observable
entity, Pharmaceutical/biologic product, Physical object, Qual-
ifier value, Special concept, Specimen, Social context, Clinical
finding, Organism, Linkage concept, and Record artifact. No
concept is shared across sub-hierarchies except for the root.
Each concept comes with a SNOMED CT identifier, which is
an integer. SNOMED CT concepts are linked by hierarchical
relations within each sub-hierarchy, such as “Tissue specimen
from heart” IS-A “Tissue specimen.”

B. Lattice and Formal Concept Analysis

We recall some basic definitions and notations in partial
orders and lattice theory [10], [11].

In a partially ordered set (poset) L, an element u is called an
upper bound of a subset X ⊆ L, if for each x ∈ X we have x ≤
u. An element m is called a minimal upper bound of a subset
X ⊆ L, if m is an upper bound of X, and for any n ≤ m such
that x ≤ n for each x ∈ X, we have m = n. We write mub(X)
for the set of minimal upper bounds of X. When mub(X) is a
singleton, the unique minimal upper bound is called the least
upper bound of X. The notions of lower bound, maximal lower
bound, greatest lower bound, are defined dually. Specifically,
mlb(X) represents the set of maximal lower bounds of X.

A poset L is a lattice if every two elements of L have a
least upper bound (join) and greatest lower bound (meet). The
meet and join of binary sets are often written in infix notation:∨
{x, y} = x ∨ y and

∧
{x, y} = x ∧ y. A poset L is a complete

lattice if every subset S ⊆ L has a least upper bound
∨

S
(join) and a greatest lower bound

∧
S (meet).

In connection with ontology, one can think of concepts
as elements of a poset, and the ordering relation as the
subsumption relation [13]. If x, y are concepts, we write x ≤ y
to mean x IS-A y, or y subsumes x. The join x ∨ y of two
concepts x, y is the least common ancestor of x and y, and the
meet x ∧ y is their greatest common descendant.

Formal Concept Analysis (FCA) [14] is a general lattice-
based method for extracting higher-level organizational infor-
mation from lower-level classification of objects according to
their attributes. The primary notion in FCA is a formal context
(or context), (O, A,R), where O is a collection of objects, A
a collection of attributes, and R is a relation R ⊆ O × A.
A fundamental theorem of FCA is that every formal context
determines a complete lattice, and reversely, every complete
lattice can be derived from a formal context.

C. Lattice-based Ontology Auditing

Well-formed ontologies often have a lattice structure [9].
The deeper philosophical and mathematical reason for lattice

to be a desirable structural property for the taxonomy relation
(e.g. IS-A) in ontologies can be elucidated with FCA [12].
Starting from two very basic types, objects and attributes, with
the assumption that intension and extension are fundamental
adjoining facets of the notion of concept, one obtains a
complete lattice automatically using FCA [14].

The upshot of this is that if we encounter a non-lattice
fragment in a taxonomic hierarchy, then somewhere upstream,
the notion of intension and extension may not have been
crystalized. This may reveal gaps in conceptual modeling.

Though desirable, the lattice property of ontologies is not
always found in most biomedical ontologies. Fig. 1 is a non-
lattice fragment [9] from SNOMED CT. “Tissue specimen
from trunk” is not a concept in SNOMED CT. Including it
appropriately makes this fragment lattice conforming.

1 2

3

54

6 7

8

Fig. 1. A non-lattice fragment in SNOMED CT. 1: Tissue specimen
from breast; 2: Tissue specimen from heart; 3: Specimen from heart;
4: Specimen from breast; 5: Specimen from mediastinum; 6: Tissue
specimen; 7: Specimen from trunk; 8: Specimen.

D. MapReduce

MapReduce [15] is a distributed programming environ-
ment to process large amounts of data in a scalable way. A
MapReduce job consists of a mapper and a reducer function,
specified by the user to process data in the form of key-value
pairs. Such a job is automatically broken into tasks executed in
parallel across a cluster of machines called compute nodes. De-
signing efficient algorithms in MapReduce requires a different
mentality than the transitional approach, with more attention
paid to data locality, job break-down, and a trade-off between
parallelism and communication latency.

III. TheMaPLE Algorithm

In this section, we introduce the algorithmic aspect of
MaPLE, our MapReduce Pipeline for Lattice-based Evaluation.
It takes a partially ordered set (poset) as input, and generates
the collection of all non-lattice pairs in the poset.

A. Non-lattice Pairs

A pair of elements a, b in a poset (L,≤) is a non-lattice pair
if | mub{a, b} |> 1, i.e. the pair a, b has at least two minimal
upper bounds. For example, in the poset given in Fig. 1, we
have mub{1, 2} = {6, 7}, so the size of mub{1, 2} is 2, making
(1, 2) a non-lattice pair in this poset. On the other hand, we
have mub{1, 3} = {7}, and so (1, 3) is a lattice pair.

Thus, finding non-lattice pairs reduces to computing the
minimal upper bounds, achieved through a sequence of set-
theoretic operations using closures as explained next.

B. Computing Minimal Upper Bounds

Given a set X of elements in a poset L, we use ⇑X to
denote the set of all common ancestors of X, i.e., ⇑X := {a |
∀x ∈ X, x < a}. Note that X ∩ (⇑X) is always empty. When X
is a singleton, i.e., X = {x}, we write ⇑x for ⇑{x}. Similarly, we
define ↑X := {a | ∃x ∈ X, x < a}. Thus, ↑X represents its strict
upper closure. It is straightforward to check that for any set
X,Y ⊆ L,

⇑X =
⋂
a∈X

⇑a, and ↑Y =
⋃
b∈Y

↑b.

For singletons, we have ⇑x = ↑x. Two elements x, y are called
incomparable if neither x ≤ y, nor y ≤ x.

The correctness of our algorithm for computing minimal
upper bounds rests on the following simple result (Theorem 1).
Before introducing this result, the following lemma should be
helpful (whose proof is omitted):

Lemma 1: Let x, y be elements in a poset L. If y ≤ x but
x < ↑y, then x = y.

Theorem 1: Let X be a set of pairwise incomparable
elements of a poset L, with the size of X at least two. We
have

mub(X) = ⇑X − ↑(⇑X).

Proof: Let m ∈ ⇑X − ↑(⇑X). Since m ∈ ⇑X, m is an upper
bound of X. Since m < ↑(⇑X), we have m < ↑t for each t ∈ ⇑X.

For any upper bound u of X (i.e., x ≤ u for each x ∈ X) with
u ≤ m, we need to show that u = m. Since u is an upper bound
of X, which contains at least two incomparable elements, we
have u ∈ ⇑X. Also, because m < ↑t for each t ∈ ⇑X, we have
m < ↑u. By Lemma 1, m = u. Hence, m is a minimal upper
bound of X.

A special case for Theorem 1 is a pair of incomparable
elements x and y, which is stated as:

mub({x, y}) = (↑x ∩ ↑y) −
⋃

t ∈ ↑x∩↑y

↑t. (1)

Fig. 2 displays a general algorithm to detect non-lattice
pairs in a poset. The input (line 1) is a poset L, represented
by its associated set of pairs x, y with x ≤ y. The output
(line 2) is a set of detected non-lattice pairs and their minimal
upper bounds. Lines 3-5 collect ancestors for each element of
L. Lines 6-17 detect non-lattice pairs by computing minimal
upper bounds using Equation (1) for each candidate pair, and
output pairs with more than one minimal upper bound.

IV. MaPLE Implementation for SNOMED CT

The algorithm (Fig. 2) to detect non-lattice fragments is
implemented using two MapReduce jobs (Fig. 3 and Fig. 4),
for exhaustive, structural analysis of SNOMED CT.

Since finding the ancestors of a concept is a basic operation
repeatedly performed throughout the MaPLE algorithm, we as-
sume that the transitive closure of the SNOMED CT concepts
hierarchy has been precomputed, to save overall time.

1: Input: A poset L
2: Output: A set R of non-lattice pairs and their minimal upper

bounds

3: for each element x ∈ L do
4: Find the set of its ancestors ↑x
5: end for
6: Initialize R = ∅
7: for each pair of elements (x, y) do
8: Calculate ↑x ∩ ↑y
9: Initialize U ← ∅

10: for each t ∈ ↑x ∩ ↑y do
11: U ← U ∪ ↑t
12: end for
13: if x and y are incomparable and |↑x ∩ ↑y − U | > 1 then
14: R← R ∪ ((x, y), ↑x ∩ ↑y − U)
15: end if
16: end for
17: return R

Fig. 2. Algorithm for detecting non-lattice pairs in a poset.

A. MapReduce Jobs

Given a set of transitively closed pairs of SNOMED CT
concepts, the first MapReduce job described in Fig. 3 simply
collects ancestors for each concept. In the mapping phase (lines
3-5), each mapper reads in a set of transitively closed concept
pairs and emits key-value pairs (c, a) where c is a concept and
a is an ancestor of c. In the reduce stage (lines 6-8), each
reducer collects all the ancestors ↑c = {a1, a2, . . .} of a concept
c and emits concept-ancestors pairs (c, ↑c).

1: Input: Transitive closure concept pairs
2: Output: Concept-ancestors pairs

3: class Mapper
4: method Map(concept c, ancestor a)
5: Emit(c, a)

6: class Reducer
7: method Reduce(c, {a1, a2, . . .})
8: Emit(c, {a1, a2, . . .})

Fig. 3. MapReduce Job 1: collecting ancestors for each concept.

Fig. 4 contains the description of the second MapReduce
job. The input is a set of concept-ancestors pairs (c, ↑c) re-
sulting from MapReduce Job 1. In implementation, such input
concept-ancestors pairs are not only split and fed into multiple
mappers, but also read by all the mappers and reducers as
DistributedCache in Hadoop.

In the map stage, each mapper first loads all concept-
ancestors pairs (c, ↑c) into a hash map CA to facilitate the
generation of candidate pairs (lines 4-7). Then each map-
per generates candidate pairs for each concept c1 (lines 8-
13) by iterating through each concept c2 in CA, checking
if c1’s concept identifier is less than c2’s concept identifier
to ensure uniqueness of the pair. A concept pair (c1, c2) is
then emitted as a key and their ancestors (↑c1,

↑c2) where
↑c1 = {a11, a12, . . .},

↑c2 = {a21, a22, . . .}, respectively, as a value.
The requirement that c1’s concept identifier is less than c2’s
concept identifier avoids the situation that the same concept
pair generates two different keys.

In the reduce stage, each reducer first loads all concept-
ancestors pairs (c, ↑c) into a hash map CA (lines 15-18).
Then each reducer checks if c1 and c2 in a concept pair

k v
1 4
1 6
1 7
1 8
2 3
2 5
2 6
2 7
2 8
3 5
3 7
3 8
4 7
4 8
5 7
5 8
6 8
7 8
Input

2 3
2 5
.
Map 2

1 4
1 6
.
Map 1

3 5
4 7
.
Map 3

Shuffle
&

Merge

3 5,7,8
4 7,8
Reduce 2

1 4,6,7,8
2 3,5,6,7,8
Reduce 1

5 7,8
6 8
7 8

Reduce 3

1 4,6,7,8
2 3,5,6,7,8
3 5,7,8
4 7,8
5 7,8
6 8
7 8

CA

1 4,6,7,8
2 3,5,6,7,8
3 5,7,8
4 7,8
5 7,8
6 8
7 8

CA
(DistributedCache)

3 5,7,8
4 7,8

Map 2

1 4,6,7,8
2 3,5,6,7,8

Map 1

5 7,8
6 8
7 8
Map 3

Shuffle
&

Merge

(2,4) {7}
(3,4) {7}
.
Reduce 2

(1,2) {6,7}
(1,3) {7}
.
Reduce 1

(4,5) {7}
(6,7) {8}
.
Reduce 3

k v
(1,2) 6,7
Non-lattice
fragments

MapReduce Job 1 MapReduce Job 2

k v
(1,2) ({4,6,7,8},{3,5,6,7,8})
(1,3) ({4,6,7,8},{5,7,8})
(1,4) ({4,6,7,8},{7,8})
(1,5) ({4,6,7,8},{7,8})
(1,6) ({4,6,7,8},{8})
.

Fig. 5. Illustrative diagram of data flow for MapReduce Job 1 and MapReduce Job 2, with input poset being the one given in Fig. 1. Key-value pair
transformations are as follows: (c, a) −→ (c, ↑c) for Job 1, and ((c1, c2), (↑c1,

↑c2)) −→ ((c1, c2), (↑c1 ∩
↑c2)− (

⋃
t ∈ ↑c1∩↑c2

↑t)) for Job 2. In the beginning of Job 2, a
copy of hashed CA is cached for all compute nodes, and another copy of CA serves as input for pairing. Dotted edges stand for data feed or distributed cache.

are incomparable (lines 20-21), calculates their minimal upper
bounds (lines 22-27), and emits pairs with more than one
minimal upper bound as keys and their minimal upper bounds
as values (lines 28-30).

Fig. 5 illustrates the two MapReduce jobs in the MaPLE
pipeline using the poset example given in Fig. 1.

B. Optimization Strategies

To reduce the total number of input and resulting pairs yet
without missing any non-lattice fragments, we incorporate two
optimization strategies in MaPLE implementation, which were
first introduced in [12].

1) Leveraging Duality and Reversing Order: After obtain-
ing the transitive closure of a set of SNOMED CT pairs {(c, a)},
we reverse the pairs and take the pairs {(a, c)} as input for
MaPLE. Ontological hierarchies have a “fan-out” shape: they
tend to have fewer upper level concepts representing more
general entities, while having lower level concepts representing
more specific entities. Since lattices can be viewed either top-
down or bottom-up, only one direction needs to be tested for
lattice property. The effect of this is that instead of computing
minimal upper bounds, we compute the maximal lower bounds
in the original hierarchy.

2) Concepts with a Unique Parent: The second optimiza-
tion strategy is skipping concepts with a unique parent in the
map stage of MapReduce Job 2. The rationale for considering
concepts with a single parent is that whenever such a concept
is involved in a non-lattice pair, there must be an ancestor of
this concept already involved in a non-lattice fragment [12],

[9]. In implementation, all concepts with a unique parent are
extracted and loaded as a DistributedCache in the map stage
of MapReduce Job 2 (Fig. 4).

C. Experimental Environment

We run MaPLE on a private cloud using Cloudera Hadoop
4.3 (Hadoop 2.0.0-cdh4.3.0) with 1 master node and 30 slave
nodes. The master node uses a dual quad-core Intel Xeon 5150
2.66GHz, while the compute nodes are machines with dual
quad-core Intel Xeon 5450 3.0GHz processors, all running
RedHat Enterprise Linux 6.4. Each node has a local 146GB
SAS hard drive. Each server has 16GB of RAM. The compute
nodes are interconnected using a low-latency 10 Gigabit Eth-
ernet network based on Arista switches and Intel NetEffects
Ethernet adapters.

V. Results

A. Basic SNOMED CT Statistics and Non-lattice Pairs

We ran MaPLE on 8 versions of SNOMED CT from 2009
to 2014, dated 07/2009 (i.e., July 2009), 01/2010, 01/2011,
01/2012, 07/2012, 01/2013, 07/2013, and 03/2014. Table I
summarizes the basic results about each version of SNOMED
CT. The 07/2009 version contained a total of 306,627 concepts,
with 445,549 direct IS-A relationship connecting concepts.
Among all possible concept pairs, 559,182 were found to
be non-lattice pairs. The MaPLE processing of all 07/2009
SNOMED CT hierarchies in the 30-node Cloudera Hadoop
environment took a total 10,168 seconds, roughly 2.8 hours.

Table II summarizes the results for the 10 largest sub-
hierarchies in the most recent (03/2014) version. For the

07/2009 01/2010 01/2011 01/2012 07/2012 01/2013 07/2013 03/2014
Total Number of Concepts 306,627 290,078 292,405 294,797 295,311 296,876 297,695 299,286
Total Number of IS-A Relations 445,549 430,489 435,294 438,711 438,927 441,589 443,796 445,357
Total Number of Non-lattice Pairs 559,182 566,239 576,688 568,535 581,754 574,204 584,934 586,771
Compute Time (s) 10,168 74,169 6,726 7,822 7,883 8,176 8,430 11,166

TABLE I. Summary of the basic statistics usingMaPLE to process 8 SNOMED CT versions since 2009.

Sub-Hierarchy (SNOMED Identifier) N TC NL PP NL% T(s)
Body Structure (123037004) 30,623 937,549 90,465 468,868,753 0.01929 738

Clinical Finding (404684003) 100,652 1,937,520 277,071 5,065,362,226 0.00547 7,875
Observable Entity (363787002) 8,314 49,006 613 34,557,141 0.00177 49

Organism (410607006) 33,175 380,364 1,530 550,273,725 0.00028 165
Pharmaceutical/Biologic Product (373873005) 16,797 123,940 6,819 141,061,206 0.00483 71

Physical Object (260787004)) 4,538 31,897 364 10,294,453 0.00354 39
Procedure (71388002) 54,091 997,984 189,110 1,462,891,095 0.01293 1,768

Qualifier Value (362981000) 8,978 39,863 380 40,297,753 0.00094 41
Social Context (48176007) 4,824 33,122 804 11,633,076 0.00691 36

Substance (105590001) 23,962 281,550 18,019 287,076,741 0.00063 107

TABLE II. Summary of the results for the 03/2014 version of SNOMED CT. N - the total number of concepts in the sub-hierarchy; TC - the total number
of transitive-closed pairs in the sub-hierarchy; NL - the total number of non-lattice pairs in the sub-hierarchy; PP - the total number of all possible pairs
obtained by the formula n × (n − 1)/2, where n is the number of concept in the sub-hierarchy; NL% - the percentage of non-lattice pairs among all possible

probe pairs, i.e. NL/PP; T(s) - theMaPLE compute time in seconds in our HPCC environment.

1: Input: Concept-ancestors pairs
2: Output: Non-lattice pairs and their minimal upper bounds

3: class Mapper
4: method Initialize
5: Initialize a HashMap CA to load concept-ancestors pairs

6: method Setup
7: Load Distributed Cache files and update CA

8: method Map(c1, {a11, a12, . . .})
9: for each concept c2 in CA do

10: if c1.id < c2.id then B c1’s ID is less than c2’s ID
11: Emit((c1, c2), ({a11, a12, . . .}, {a21, a22, . . .}))
12: end if
13: end for

14: class Reducer
15: method Initialize
16: Initialize a HashMap CA to load concept-ancestors pairs

17: method Setup
18: Load Distributed Cache file and update CA

19: method Reduce((c1, c2), {({a11, a12, . . .}, {a21, a22, . . .})})
20: N ← {a11, a12, . . .} ∪ {a21, a22, . . .} B Union ancestors
21: if c1 < N and c2 < N then B c1, c2 are incomparable
22: A← {a11, a12, . . .} ∩ {a21, a22, . . .} B Intersect ancestors
23: U ← ∅
24: for each concept a in A do
25: U ← U ∪CA.Get(a) B Union a’s ancestors
26: end for
27: B← A − U B Calculate minimal upper bounds
28: if |B| > 1 then
29: Emit((c1, c2), B)
30: end if
31: end if

Fig. 4. MapReduce Job 2: detecting non-lattice fragments.

sub-hierarchy “Body Structure,” there were 30,623 concepts
and 937,549 transitive closure pairs. The number of non-
lattice pairs found was 90,465, which is about 0.019% of all
468,868,753 possible pairs. It can also be seen that processing
most of the sub-hierarchies took just one or two minutes.
Most of the time was spent on processing larger hierarchies.
For example, processing “Clinical Finding,” the largest sub-

hierarchy, took about 2 hours. The total computing time for
the 03/2014 version was 11,166 seconds, around 3 hours.

B. Comparison of SNOMED CT Versions

MaPLE allows us to track the changes of non-lattice
pairs between different versions. Fig. 6 shows the summary
of the differences between SNOMED CT versions using the
percentage of non-lattice pair changes. We use |N-O|/|N| and
|O-N|/|O| to show the difference. Here |X| stands for the size of
the set X. Therefore, |N-O|/|N| is the percentage of non-lattice
pairs which is newly added to the later version. |O-N|/|O| is
the percentage of non-lattice pairs which is removed from the
previous version. It is important to note that |N-O|,|N|-|O| in
general – we can have two equal-sized sets that have nothing
in common, and so in the extreme, |N-O|=|N| but |N|-|O|=0.

07
/20

09

01
/20

10

01
/20

11

01
/20

12

07
/20

12

01
/20

13

07
/20

13

03
/20

14

2%

4%

6%

1.52

2.33

5.32

4.24 4.40 4.26

6.32

2.75

4.10 3.97

6.42

3.14

6.02

7.00

|O-N|/|O|

|N-O|/|N|

Fig. 6. Percentage changes of non-lattice pairs in 8 SNOMED CT versions.

The colored bars in Fig. 6 show the percentage changes
between versions of SNOMED CT. Comparing the 01/2010
version with the 07/2009 version, we found 15,582 non-lattice
pairs in the 01/2010 version but not in the 07/2009 version
(N-O). This represented 2.75% (|N-O|/|N|) of the total number

of non-lattice pairs in the 01/2010 version. On the other hand,
8,525 non-lattice pairs were found in the 07/2009 version but
not 01/2010 (O-N), which amounted to 1.52% of the non-
lattice pairs in the 07/2009 version. Similarly, for the 01/2011
version, 13,210 (2.33%) non-lattice pairs were excluded from
the earlier 01/2010 version and 23,659 (4.10%) non-lattice
pairs were included. One can see that the largest percentage
change took place in the most recent (03/2014) version, which
contained 41,103 new non-lattice pairs.

Our results show that the change rates in non-lattice pairs
are significantly higher than the change rates of the corre-
sponding underlying structure (nodes and IS-A edges) between
the 8 SNOMED CT versions. With respect to concept nodes,
the average percentage change rate in non-lattice pairs is 38.6
times higher for “in old but not in new” (O-N) and 8.4 times
higher for “in new not in old” (N-O). With respect to IS-A
edges, the average percentage change rate in non-lattice pairs
is 4.4 times higher for (O-N) and 3.5 times higher for (N-O).
This suggests that fragments around non-lattice pairs exhibit
significantly higher rates of change in ontological evolution.

Scalability is one of the most important features of cloud
computing. We performed an experiment on the number of
reducer tasks in MapReduce Job 2 for MaPLE, a more
computationally intensive step. We found a linear decrease of
the computing time when the number of reducer tasks ranged
from 1 to 10. However, for 15 to 60 reducer tasks, we see a
diminishing return in saved time. This may be due to the fact
that when splitting intermediate results from mapper into a
large number of smaller file fragments for reducer, the task
setup and scheduling time may become a more significant
contributor in total time. For the computing time reported in
Table I, 9 reducer tasks were involved.

VI. Conclusion

In this paper we introduced a general MapReduce pipeline,
called MaPLE for extracting non-lattice fragments in large par-
tially ordered sets and demonstrate its applicability in ontology
quality assurance. Our contributions include: a general MapRe-
duce lattice-checking algorithm for posets; an application of
MaPLE for exhaustive analysis of 8 SNOMED CT versions
since 2009; and a global change analysis of such SNOMED
CT versions with respect to the underlying concepts, relation-
ships, and non-lattice pairs. Our change analysis indicated that
fragments around non-lattice pairs exhibit significantly higher
rates of change in the process of ontological evolution.

One limitation of this approach is that it does not take
into account the editorial guidelines of the IHTSDO for the
development of SNOMED CT, which are used to prevent
the creation of unnecessary concepts (from the perspective of
clinical utility). If such guidelines were formalized in machine-
readable form, we could integrate them into our analysis, in
order to prevent certain non-lattice pairs from being seen as
errors. In the future, we plan to work with the IHTSDO to
tailor our analysis to their quality assurance processes.

Our approach sets the foundation for structural auditing of
ontologies in a couple of new directions. One is to mine the
large collection of non-lattice fragments to extract clinically
interpretable insights in the ontological evolution. The second
is to perform large-scale MapReduce analysis of biomedical

ontologies taking advantage of the combination of linguistic
and structural information conveyed by the ontological sys-
tems, along the lines of work reported in [16], [17], [18].

VII. Acknowledgments

This work was supported in part by the Case Western
Reserve University CTSA Grant NIH/NCATS UL1TR000439
and by the Intramural Research Program of the NIH, National
Library of Medicine. This work made use of the High Perfor-
mance Computing Resource in the Core Facility for Advanced
Research Computing at Case Western Reserve University.

References
[1] Bodenreider O. Biomedical ontologies in action: role in knowledge

management, data integration and decision support. Geissbuhler A,
Kulikowski C, editors. IMIA Yearbook of Medical Informatics 2008.
Methods Inf Med 2008;47(Suppl 1):67-79.

[2] Cui L. Ontology-guided health information extraction, organization,
and exploration. PhD Dissertation, Department of EECS, Case Western
Reserve University, August 2014.

[3] Zhang GQ, Siegler T, Saxman P, Sandberg N, Mueller R, Johnson
N, Hunscher D, Arabandi S. VISAGE: A Query Interface for Clinical
Research. AMIA Jt Summits Transl Sci Proc. 2010;76-80.

[4] Zhang GQ, Cui L, Lhatoo S, Schuele S, Sahoo S. MEDCIS: Multi-
Modality Epilepsy Data Capture and Integration System. AMIA Annu
Symp Proc. 2014 (in press).

[5] Jayapandian CP, Chen CH, Dabir A, Lhatoo S, Zhang GQ, Sahoo S.
Domain Ontology As Conceptual Model for Big Data Management:
Application in Biomedical Informatics. International Conference on
Conceptual Modeling 2014 (in press).

[6] Jayapandian CP. Cloudwave: A Cloud Computing Framework for Multi-
modal Electrophysiological Big Data. PhD Dissertation, Department of
EECS, Case Western Reserve University, August 2014.

[7] Zhu X, Wei JW, Baorto D, Weng C, Cimino J. A review of auditing
methods applied to the content of controlled biomedical terminologies.
J Biomedical Informatics, Vol. 42, pages 412-25, 2009.

[8] Rector AL, Brandt S, Schneider T. Getting the foot out of the pelvis:
modeling problems affecting use of SNOMED CT hierarchies in prac-
tical applications. J Am Med Inform Assoc. 2011;18(4):432-40.

[9] Zhang GQ and Bodenreider O. Large-scale, exhaustive lattice-based
structural auditing of SNOMED CT. AMIA Annu Symp Proc.
2010;922-26.

[10] Gierz G, Hofmann KH, Keimel K, Lawson DJ, Mislove M, Scott DS.
Continuous Lattices and Domains. In: Encyclopedia of Mathematics
and its Applications (No. 93), Cambridge University Press, 2003.

[11] Zhang GQ. Logic of Domains. Birkhäuser, Boston, 1991.
[12] Zhang GQ and Bodenreider O. Using SPARQL to Test for Lattices:

application to quality assurance in biomedical ontologies. The Semantic
Web-ISWC 2010, pages 273-288.

[13] Joslyn C. Poset ontologies and concept lattices as semantic hierarchies.
Lecture Notes in Computer Science, 2004;3127:287-302.

[14] Ganter B, Wille R. Formal Concept Analysis. Springer-Verlag, 1999.
[15] Dean J, Ghemawat S. MapReduce: Simplified data processing on large

clusters. Communications of the ACM, 2008;51(1):107-13.
[16] Luo L, Mejino J, Zhang GQ. An Analysis of FMA Using Structural

Self-Bisimilarity. J. Biomedical Informatics 2013;46(3):497-505.
[17] Luo L, Xu R, Zhang GQ. Dissecting the Ambiguity of FMA Concept

Names Using Taxonomy and Partonomy Structural Information. AMIA
Summits Transl Sci Proc. 2013; 2013:157-61.

[18] Zhang GQ, Luo L, Ogbuji C, Joslyn C, Mejino J, Sahoo S. An Analysis
of Multi-type Relational Interactions in FMA Using Graph Motifs with
Disjointness Constraints. AMIA Annu Symp Proc. 2012;1060-9.

